Given Information:
Galvanometer resistance, \(G = 90\,\Omega\)
Shunt resistance, \(S = 10\,\Omega\)
Ammeter range, \(I = 5\,mA = 5 \times 10^{-3}\,A\)
Number of divisions on one side = \(50\) divisions
Step-by-Step Explanation:
Step 1: Find the galvanometer current (\(I_g\)) for full-scale deflection.
Using the formula for shunt resistance in galvanometer conversion:
\[ I_g \cdot G = (I - I_g) \cdot S \]
Substitute given values:
\[ I_g \times 90 = (5\times10^{-3} - I_g)\times10 \]
Solving for \(I_g\):
\[ 90\,I_g = 5\times10^{-2} - 10\,I_g \]
Bring terms involving \(I_g\) together:
\[ 90\,I_g + 10\,I_g = 5\times10^{-2} \]
\[ 100\,I_g = 5\times10^{-2} \]
Thus,
\[ I_g = \frac{5\times10^{-2}}{100} = 5\times10^{-4}\,A \]
Step 2: Find current sensitivity (divisions per ampere):
Number of divisions for full-scale deflection = \(50\) divisions
Thus, current sensitivity (\(S_I\)) is:
\[ S_I = \frac{\text{Number of divisions}}{I_g} = \frac{50}{5\times10^{-4}} = 1\times10^{5}\,\text{div/A} \]
Final Conclusion:
Current sensitivity is \(1\times10^{5}\,\text{divisions per ampere}\).