For an adiabatic process, the relationship between pressure ($P$) and temperature ($T$) is given by:
$P^{1-\gamma}T^\gamma = \text{constant}$, or $P_1^{1-\gamma}T_1^\gamma = P_2^{1-\gamma}T_2^\gamma$.
This can be rewritten as $\frac{P_2}{P_1} = \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}$.
So, $P_2 = P_1 \left(\frac{T_2}{T_1}\right)^{\frac{\gamma}{\gamma-1}}$.
Given values:
Initial pressure $P_1 = 4 \text{ atm}$.
Adiabatic index for monatomic gas $\gamma = \frac{5}{3}$.
Initial temperature $T_1 = 27 ^\circ\text{C} = 27 + 273 = 300 \text{ K}$.
Final temperature $T_2 = 327 ^\circ\text{C} = 327 + 273 = 600 \text{ K}$.
Calculate the exponent $\frac{\gamma}{\gamma-1}$:
$\gamma-1 = \frac{5}{3} - 1 = \frac{5-3}{3} = \frac{2}{3}$.
$\frac{\gamma}{\gamma-1} = \frac{5/3}{2/3} = \frac{5}{2}$.
Calculate the temperature ratio:
$\frac{T_2}{T_1} = \frac{600 \text{ K}}{300 \text{ K}} = 2$.
Now calculate $P_2$:
$P_2 = P_1 \left(2\right)^{5/2} = 4 \text{ atm} \times 2^{5/2}$.
Since $4 = 2^2$:
$P_2 = 2^2 \times 2^{5/2} = 2^{2 + 5/2} = 2^{4/2 + 5/2} = 2^{9/2} \text{ atm}$.
$2^{9/2} = 2^{4.5} = \sqrt{2^9} = \sqrt{512} = 16\sqrt{2} \text{ atm}$.
Numerically, $16\sqrt{2} \approx 16 \times 1.4142 = 22.627 \text{ atm}$.
The calculated value $P_2 = 2^{9/2}$ atm does not match any of the options directly. Option (d) is $2^{8/3}$ atm $\approx 6.35$ atm.
There is a significant discrepancy between the calculated result and the provided options/marked answer.
The derived answer using standard physics formulas is $2^{9/2}$ atm.
\[ \boxed{2^{9/2} \text{ atm (Calculated, does not match options/marked answer)}} \]
(Note: Solution adheres to calculation. Marked answer (d) implies $P_2=2^{8/3}$ atm which is inconsistent with $P_1=4$ atm and the temperature change.)