Step 1: Vapour density 20 ⇒ molar mass of mixture
\[
M_{\text{mix}} = 2 \times \text{V.D.} = 40 \text{ g mol}^{-1}.
\]
Step 2: Let moles of CO = \(x\), moles of CO$_2$ = \(y\).
Total moles:
\[
x+y=\frac{100}{40}=2.5 \text{ mol}. \quad\cdots(1)
\]
Step 3: Mass equation using molar masses
(\(M_{\text{CO}}=28\), \(M_{\text{CO$_2$}}=44\))
\[
28x+44y=100. \quad\cdots(2)
\]
Step 4: From (1), \(y=2.5-x\).
Substitute in (2):
\[
28x+44(2.5-x)=100
\]
\[
28x+110-44x=100
\]
\[
-16x=-10
\]
\[
x=0.625 \text{ mol}.
\]
Hence the mixture contains 0.625 mole of CO.