Step 1: Use the Formula for Thermal Stress
Thermal stress is given by:
$$ F = Y \alpha \Delta T A $$
\( Y \) = Young’s modulus
\( \alpha \) = Coefficient of linear thermal expansion
\( \Delta T \) = Temperature change
\( A \) = Area of cross-section
Step 2: Substitute the Given Values
Given:
\( Y = 0.5 \times 10^{11} \) N/m²
\( \alpha = 10^{-5} \) °C\(^{-1}\)
\( \Delta T = 100 \)°C
\( A = 10^{-3} \) m²
Substituting these values into the formula:
$$ F = (0.5 \times 10^{11}) (10^{-5}) (100) (10^{-3}) $$
Step 3: Simplify
$$ F = 0.5 \times 10^3 \times 100 $$
$$ F = 50 \times 10^3 \text{ N} $$
Step 4: Conclusion
The compressive force developed is 50 × 10³ N.
If the monochromatic source in Young's double slit experiment is replaced by white light,
1. There will be a central dark fringe surrounded by a few coloured fringes
2. There will be a central bright white fringe surrounded by a few coloured fringes
3. All bright fringes will be of equal width
4. Interference pattern will disappear
The output (Y) of the given logic gate is similar to the output of an/a :
A | B | Y |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | 0 |
List I (Spectral Lines of Hydrogen for transitions from) | List II (Wavelength (nm)) | ||
A. | n2 = 3 to n1 = 2 | I. | 410.2 |
B. | n2 = 4 to n1 = 2 | II. | 434.1 |
C. | n2 = 5 to n1 = 2 | III. | 656.3 |
D. | n2 = 6 to n1 = 2 | IV. | 486.1 |