We use the formula for the elongation of a metal wire under tensile force:
\[
\Delta L = \frac{F L}{A Y}
\]
Where:
\( \Delta L \) is the elongation of the wire,
\( F \) is the force applied,
\( L \) is the length of the wire,
\( A \) is the cross-sectional area of the wire,
\( Y \) is the Young's modulus of the material.
Given:
\( F = 1000 \, \text{N} \),
\( L = 1 \, \text{m} \),
\( \Delta L = 0.25 \, \text{cm} = 0.0025 \, \text{m} \),
\( Y = 10^{11} \, \text{Pa} \).
For a circular cross section, the area \( A \) is given by \( A = \pi r^2 \), where \( r \) is the radius of the wire.
Rearranging the formula to solve for the diameter:
\[
r^2 = \frac{F L}{\Delta L Y \pi}
\]
Substitute the given values:
\[
r^2 = \frac{1000 \times 1}{0.0025 \times 10^{11} \times \pi}
\]
\[
r^2 = \frac{1000}{7.85 \times 10^{8}} = 1.27 \times 10^{-6}
\]
\[
r = 1.13 \times 10^{-3} \, \text{m} = 1.13 \, \text{mm}
\]
Thus, the minimum diameter is:
\[
d = 2r = 2 \times 1.13 \, \text{mm} = 2.26 \, \text{mm}
\]
Thus, the correct answer is:
\[
\boxed{2.26 \, \text{mm}}
\]