$\left(\frac{d \theta}{d t}\right)_{1}= K \left(\theta_{1}-\theta_{0}\right) \ldots$ (i)
$\left(\frac{d \theta}{d t}\right)_{2}= K \left(\theta_{2}-\theta_{0}\right) \ldots$ (ii)
$\therefore \frac{(d \theta / d t)_{1}}{(d \theta / d t)_{2}}=\frac{\theta_{1}-\theta_{2}}{\theta_{2}-\theta_{0}}$
$=\frac{50-25}{40-25}$
$\frac{3}{(d \theta / d t)_{2}} \frac{25}{15}$
$ \Rightarrow\left(\frac{d \theta}{d t}\right)_{2}=1.8^{\circ} C / \min$