Let $x$ be the number of P1 units produced and $y$ be the number of P2 units produced.
Material constraints are:
\[
\text{M1: } 2x + 3y \le 70,
\qquad
\text{M2: } 2x + y \le 50,
\qquad
\text{M3: } 2y \le 40 \Rightarrow y \le 20.
\]
Profit function:
\[
Z = 150x + 100y.
\]
Use the binding constraint $y = 20$ (since M3 is tight).
Substitute in M1 and M2:
\[
2x + 3(20) \le 70 \Rightarrow 2x \le 10 \Rightarrow x \le 5,
\]
\[
2x + 20 \le 50 \Rightarrow x \le 15.
\]
So the limiting value is $x = 5$.
Profit:
\[
Z = 150(5) + 100(20)
= 750 + 2000
= 2750.
\]
But check if $y = 0$ gives higher profit (profit per M1 is better for P1):
\[
2x \le 70 \Rightarrow x = 35 \quad\text{but M2: } 2x \le 50 \Rightarrow x \le 25.
\]
So $x = 25, y = 0$.
Profit:
\[
Z = 150(25) = 3750.
\]
Now check the intersection of M1 and M2 constraints:
Solve
\[
2x + 3y = 70,
\qquad
2x + y = 50.
\]
Subtract:
\[
2y = 20 \Rightarrow y = 10,
\]
\[
2x + 10 = 50 \Rightarrow x = 20.
\]
Profit:
\[
Z = 150(20) + 100(10) = 3000 + 1000 = 4000.
\]
This is the maximum feasible profit.
Final Answer: 4000