A magnetic needle suspended in a vertical plane at $30^{\circ}$ from the magnetic meridian makes an angle $45^{\circ}$ with the horizontal. What will be the true angle of dip ?
Let $B_{e}$ be the magnetic field at some point. H and V be the horizontal and vertical components of $B_{e}$ and $\theta$ is the actual angle of dip at the same place. $H =B_{e} \cos \theta$ and $V =B_{e} \sin \theta$ $\therefore \frac{V}{H} =\tan \theta$ or $\tan \theta =\frac{V}{H}$ ...(i) In a vertical plane at $30^{\circ}$ from the magnetic meridian, the horizontal component is $H'=H \cos 30^{\circ}=\frac{H \sqrt{3}}{2}$ While vertical component is still V. Therefore, apparent dip will be given by $\tan \theta'=\frac{V}{H'}=\frac{V}{H \sqrt{3} / 2}=\frac{2 V}{H \sqrt{3}}$ ...(ii) Dividing E(i) by E(ii),we have $\frac{\tan \theta}{\tan \theta'} =\frac{\frac{V}{H}}{\frac{2 V}{H \sqrt{3}}}$ $=\frac{\sqrt{3}}{2}$ or $\tan \theta =\frac{\sqrt{3}}{2} \tan \theta'$ $=\frac{\sqrt{3}}{2} \tan 45^{\circ} \left(\because \theta=45^{\circ}\right)$ $=\frac{\sqrt{3}}{2}$ $\therefore \theta =\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$