Step 1: Using the Formula for Magnetic Field in a Solenoid
The magnetic field inside a long solenoid is given by:
\[
B = \mu_0 n I
\]
where:
- \( \mu_0 = 4\pi \times 10^{-7} \, T \cdot m/A \) (permeability of free space),
- \( n = \frac{N}{L} \) is the number of turns per unit length,
- \( I = 3.5 \) A (current through the solenoid),
- \( N = 600 \) (total number of turns),
- \( L = 75 \) cm \(= 0.75\) m (length of the solenoid).
Step 2: Substituting Values
First, we calculate \( n \):
\[
n = \frac{N}{L} = \frac{600}{0.75} = 800 \, \text{turns/m}
\]
Now, we compute \( B \):
\[
B = (4\pi \times 10^{-7}) \times (800) \times (3.5)
\]
\[
B = (4\pi \times 10^{-7}) \times 2800
\]
\[
B = (4 \times 3.1416 \times 10^{-7}) \times 2800
\]
\[
B = (1.256 \times 10^{-6}) \times 2800
\]
\[
B = 3.52 \times 10^{-3} \, T
\]
Thus, the correct answer is \( \mathbf{(4)} \ 3.52 \times 10^{-3} \, T \).