Given:
Diameter of blade, $D = 24$ m $\Rightarrow$ Radius, $r = 12$ m
Wind velocity, $V = 6$ m/s
Air density, $\rho_a = 1.23$ kg/msuperscript{3}
$C_p = 0.3$, $\eta_t = 0.90$, $\eta_p = 0.60$
$g = 9.81$ m/ssuperscript{2}, $\rho_w = 1000$ kg/msuperscript{3}, $H = 20$ m
Step 1: Power available in wind
\[
P_{wind} = \frac{1}{2} \rho_a A V^3, \quad A = \pi r^2 = \pi (12)^2 = 452.39 \, {m}^2
\]
\[
P_{wind} = 0.5 \cdot 1.23 \cdot 452.39 \cdot (6)^3 = 60076.73 \, {W}
\]
Step 2: Useful power at pump
\[
P_{useful} = P_{wind} \cdot C_p \cdot \eta_t \cdot \eta_p = 60076.73 \cdot 0.3 \cdot 0.9 \cdot 0.6 = 9730.37 \, {W}
\]
Step 3: Use hydraulic power equation to find $Q$
\[
P = \rho_w g Q H \Rightarrow Q = \frac{P}{\rho_w g H} = \frac{9730.37}{1000 \cdot 9.81 \cdot 20} = \frac{9730.37}{196200} \approx 0.0496 \, {m}^3/{s}
\]
\[
Q = 0.0496 \cdot 1000 = \boxed{49.60 \, {L/s}}
\]