752
772
792
782
Step 1: Find the total number of elements in \(A \times B\).
- The Cartesian product \(A \times B\) contains \(n(A) \times n(B) = 5 \times 2 = 10\) elements.
Step 2: Calculate the subsets.
- The total number of subsets of \(A \times B\) is \(2^{10} = 1024\).
- Subsets with at least 3 and at most 6 elements are given by: \[ \binom{10}{3} + \binom{10}{4} + \binom{10}{5} + \binom{10}{6}. \] - Calculate each term: \[ \binom{10}{3} = 120, \quad \binom{10}{4} = 210, \quad \binom{10}{5} = 252, \quad \binom{10}{6} = 210. \] - Summing these: \[ 120 + 210 + 252 + 210 = 792. \] Final Answer: The number of subsets is \(792\).
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Relation is said to be empty relation if no element of set X is related or mapped to any element of X i.e, R = Φ.
A relation R in a set, say A is a universal relation if each element of A is related to every element of A.
R = A × A.
Every element of set A is related to itself only then the relation is identity relation.
Let R be a relation from set A to set B i.e., R ∈ A × B. The relation R-1 is said to be an Inverse relation if R-1 from set B to A is denoted by R-1
If every element of set A maps to itself, the relation is Reflexive Relation. For every a ∈ A, (a, a) ∈ R.
A relation R is said to be symmetric if (a, b) ∈ R then (b, a) ∈ R, for all a & b ∈ A.
A relation is said to be transitive if, (a, b) ∈ R, (b, c) ∈ R, then (a, c) ∈ R, for all a, b, c ∈ A
A relation is said to be equivalence if and only if it is Reflexive, Symmetric, and Transitive.