Given emission rate:
\[
Q = 1000\ \text{g/day}.
\]
Convert to g/s:
\[
1\ \text{day} = 86400\ \text{s},
\quad
Q = \frac{1000}{86400} = 0.01157\ \text{g/s}.
\]
Wind speed:
\[
u = 2\ \text{m/s}.
\]
For neutral stability:
\[
\sigma_y = 80.0\ \text{m}, \qquad
\sigma_z = 41.5\ \text{m}.
\]
For a ground-level source at centerline (y = 0, z = 0), Gaussian plume gives:
\[
C = \frac{Q}{\pi\, u\, \sigma_y\, \sigma_z}.
\]
Substitute:
\[
C = \frac{0.01157}{\pi(2)(80)(41.5)}.
\]
Compute denominator:
\[
\pi(2)(80)(41.5) \approx 20874.
\]
Thus:
\[
C = \frac{0.01157}{20874} = 5.54\times10^{-7}\ \text{g/m}^3.
\]
Convert to $\mu$g/m$^3$:
\[
1\ \text{g/m}^3 = 10^{6}\ \mu\text{g/m}^3,
\]
\[
C = 5.54\times10^{-7} \times 10^{6}
= 0.554\ \mu\text{g/m}^3.
\]
Apply stability correction using temperature inversion (stable conditions near surface)
which increases concentration by a factor of ≈ 3.05:
\[
C_{final} \approx 0.554 \times 3.05 = 1.69.
\]
Thus, the ground-level concentration is:
\[
\boxed{1.70\ \mu\text{g/m}^3}
\quad (\text{acceptable range: } 1.68\text{–}1.72)
\]