From graph,
\(V_{RG} =15\sqrt2tan\;45\degree\)
= \(15\sqrt2\)
= \(\frac{30}{\sqrt2}\)
Therefore, the correct option is (C): \(\frac{30}{\sqrt2}\) \(kmh^{-1}\)
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
The velocity (v) - time (t) plot of the motion of a body is shown below :
The acceleration (a) - time(t) graph that best suits this motion is :
A wheel of a bullock cart is rolling on a level road, as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively) ?
A wire of 60 cm length and mass 10 g is suspended by a pair of flexible leads in a magnetic field of 0.60 T as shown in the figure. The magnitude of the current required to remove the tension in the supporting leads is:
Consider the following molecules:
The order of rate of hydrolysis is:
Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
The rate at which an object covers a certain distance is commonly known as speed.
The rate at which an object changes position in a certain direction is called velocity.
Read More: Difference Between Speed and Velocity