The formula for the directional derivative of a function \( f(x, y) \) at a point \( (x_0, y_0) \) along a unit vector \( \mathbf{v} = (v_x, v_y) \) is:
\[
D_{\mathbf{v}} f(x_0, y_0) = \nabla f(x_0, y_0) \cdot \mathbf{v}
\]
where \( \nabla f(x_0, y_0) \) is the gradient of \( f(x, y) \) at \( (x_0, y_0) \), and \( \mathbf{v} \) is the unit vector in the direction of the line.
The gradient of \( f(x, y) = x e^y \) is:
\[
\nabla f(x, y) = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) = \left( e^y, x e^y \right)
\]
At \( (x_0, y_0) = (2, 0) \), the gradient is:
\[
\nabla f(2, 0) = \left( e^0, 2 e^0 \right) = (1, 2)
\]
The direction vector from \( (2, 0) \) to \( \left( \frac{1}{2}, 2 \right) \) is:
\[
\mathbf{v} = \left( \frac{1}{2} - 2, 2 - 0 \right) = \left( -\frac{3}{2}, 2 \right)
\]
To make it a unit vector, we divide by its magnitude:
\[
|\mathbf{v}| = \sqrt{\left( -\frac{3}{2} \right)^2 + 2^2} = \sqrt{\frac{9}{4} + 4} = \sqrt{\frac{25}{4}} = \frac{5}{2}
\]
Thus, the unit vector is:
\[
\mathbf{v} = \left( \frac{-3}{5}, \frac{4}{5} \right)
\]
Now, the directional derivative is:
\[
D_{\mathbf{v}} f(2, 0) = \nabla f(2, 0) \cdot \mathbf{v} = (1, 2) \cdot \left( \frac{-3}{5}, \frac{4}{5} \right)
\]
\[
D_{\mathbf{v}} f(2, 0) = 1 \times \frac{-3}{5} + 2 \times \frac{4}{5} = \frac{-3}{5} + \frac{8}{5} = \frac{5}{5} = 1
\]
Thus, the directional derivative at the point \( (2, 0) \) is \( \boxed{1} \).