Given continuity and function definitions, use matching at boundaries:
- At \( x = -1 \), set:
\[
\lim_{x \to -1^-} (ax^2 + bx + c) = \lim_{x \to -1^+} (2x^2 + 4x + 1)
\Rightarrow a + (-b) + c = 2 + (-4) + 1 = -1
\Rightarrow a - b + c = -1 \quad \text{(1)}
\]
- At \( x = 1 \), match:
\[
2x^2 + 4x + 1 = cx^2 + bx + a
\Rightarrow 2 + 4 + 1 = c + b + a = 7
\Rightarrow a + b + c = 7 \quad \text{(2)}
\]
Also given \( \lim_{x \to -3/2} f(x) = 14 \):
\[
x = -\frac{3}{2} \in x \leq -1 \Rightarrow f(x) = a(\frac{9}{4}) - \frac{3}{2}b + c = 14
\Rightarrow \frac{9a}{4} - \frac{3b}{2} + c = 14 \quad \text{(3)}
\]
Solve the system (1), (2), (3) to find \( a, b, c \), then substitute into:
\[
f(2) = c(4) + b(2) + a
\Rightarrow \boxed{-8}
\]