Step 1: Analyze the given function.
1. Case 1: For \( x \geq 0 \), \( |x| = x \). Then:
\[
f(x) = |1 - x + x| = |1| = 1.
\]
2. Case 2: For \( x<0 \), \( |x| = -x \). Then:
\[
f(x) = |1 - x - x| = |1 - 2x|.
\]
Step 2: Check continuity.
For \( x \geq 0 \), \( f(x) = 1 \). For \( x<0 \), \( f(x) = |1 - 2x| \). At the transition point \( x = 0 \):
\[
f(0^+) = 1, \quad f(0^-) = |1 - 2(0)| = 1.
\]
Similarly, at \( x = 1 \), \( f(1^+) = 1 \) and \( f(1^-) = 1 \). Thus, \( f(x) \) is continuous everywhere.
Final Answer: \( \boxed{{(D)}} \)