Let's analyze the given functional equation: $f(xy) = f(x)f(y) + f(x) + f(y)$.
This equation can be rewritten as:
$f(xy+1) = (f(x)+1)(f(y)+1)$
Now, we are given a value: $160000$. Let's factorize it into prime factors:
$160000 = 2^6 \times 5^5$
We need to find $f(160000)$. Using the functional equation:
$f(xy) = f(x)f(y) + f(x) + f(y)$
So,
$f(160000) = f(2^6 \cdot 5^5) = f(2^6)f(5^5) + f(2^6) + f(5^5)$
Now, compute $f(2^6)$ and $f(5^5)$ recursively using the same rule.
Start with $f(2^6)$:
$f(2^6) = f(2)f(2^5) + f(2) + f(2^5)$
Similarly, compute $f(2^5), f(2^4)$, and so on down to $f(2)$. Likewise for powers of 5.
Assuming $f(2) = f(5) = 1$ (as given), we find the recursive structure forms a pattern. Each time we apply the equation, we multiply and add previous results. Using this process repeatedly:
We get:
$f(2^6) = 63$
$f(5^5) = 65$
Now substitute back:
$f(160000) = 63 \cdot 65 + 63 + 65 = 4095$
Therefore, the value of $f(160000)$ is $\boxed{4095}$.
If the domain of the function \[ f(x)=\log\left(10x^2-17x+7\right)\left(18x^2-11x+1\right) \] is $(-\infty,a)\cup(b,c)\cup(d,\infty)-\{e\}$, then $90(a+b+c+d+e)$ equals
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: