Step 1: Calculate the displacement vector
The displacement vector \( \mathbf{d} \) is given by:
\[
\mathbf{d} = (x_2 - x_1) \hat{i} + (y_2 - y_1) \hat{j} + (z_2 - z_1) \hat{k}
\]
Substituting the given values:
\[
\mathbf{d} = (4 - 2) \hat{i} + (3 - 2) \hat{j} + (2 - 1) \hat{k}
\]
\[
\mathbf{d} = 2\hat{i} + \hat{j} + \hat{k}
\]
Step 2: Compute Work Done
The work done \( W \) is calculated using the dot product:
\[
W = \mathbf{F} \cdot \mathbf{d}
\]
\[
W = (4\hat{i} + 2\hat{j} + \hat{k}) \cdot (2\hat{i} + \hat{j} + \hat{k})
\]
Expanding the dot product:
\[
W = (4 \times 2) + (2 \times 1) + (1 \times 1)
\]
\[
W = 8 + 2 + 1 = 11 \text{ J}
\]
Step 3: Conclusion
Thus, the work done by the force is:
\[
\mathbf{11 \text{ J}}
\]