Step 1: For laminar flow over an isothermal flat plate, the local correlation is
\[
\mathrm{Nu}_x=0.332\,\mathrm{Re}_x^{1/2}\,\mathrm{Pr}^{1/3}
=0.332\left(\frac{u_\infty x}{\nu}\right)^{1/2}\mathrm{Pr}^{1/3}.
\]
Thus
\[
h_x=\frac{k\,\mathrm{Nu}_x}{x}
=0.332\,k\,\mathrm{Pr}^{1/3}\left(\frac{u_\infty}{\nu}\right)^{1/2} x^{-1/2}
\equiv C\,x^{-1/2},
\]
where \(C=0.332\,k\,\mathrm{Pr}^{1/3}\left(\dfrac{u_\infty}{\nu}\right)^{1/2}\) (independent of \(x\)).
Similarly for \(y\)-direction flow: \(h_y=C\,y^{-1/2}\).
Step 2: Compute the area-averaged coefficients.
\[
\overline{h}_l=\frac{1}{l}\int_0^l Cx^{-1/2}dx=\frac{1}{l}\left[2C x^{1/2}\right]_0^l=\frac{2C}{\sqrt{l}},
\quad
\overline{h}_w=\frac{1}{w}\int_0^w C y^{-1/2}dy=\frac{2C}{\sqrt{w}}.
\]
Step 3: Take the ratio:
\[
\frac{\overline{h}_w}{\overline{h}_l}
=\frac{2C/\sqrt{w}}{2C/\sqrt{l}}=\sqrt{\frac{l}{w}}
=\sqrt{\frac{4}{1}}=2.
\]
\[
\boxed{2}
\]