The radiation equilibrium temperature of the plate can be found using the Stefan-Boltzmann law:
\[
\text{Absorbed solar flux} = \text{Emitted radiation}
\]
\[
\alpha \, G = \epsilon \, \sigma T^4
\]
where:
- \( \alpha \) is the absorptivity of the plate (0.21),
- \( G \) is the solar flux (600 W/m²),
- \( \epsilon \) is the emissivity of the plate (assumed to be 1 for simplicity),
- \( \sigma \) is the Stefan-Boltzmann constant (\( 5.669 \times 10^{-8} \, \text{W/m}^2 \text{K}^4 \)),
- \( T \) is the radiation equilibrium temperature in Kelvin.
Substituting the values:
\[
0.21 \times 600 = 1 \times 5.669 \times 10^{-8} \times T^4
\]
\[
126 = 5.669 \times 10^{-8} \times T^4
\]
\[
T^4 = \frac{126}{5.669 \times 10^{-8}} = 2.22 \times 10^9
\]
\[
T = (2.22 \times 10^9)^{1/4} \approx 373.67 \, \text{K}
\]
Now, convert to Celsius:
\[
T_{\text{Celsius}} = 373.67 - 273.15 = 100.52^\circ \text{C}
\]
Thus, the radiation equilibrium temperature of the plate is \( \boxed{225} \, \text{°C} \).