Let the number of cheques of ₹100, ₹250, and ₹500 be \( x, y, z \) respectively.
Total number of cheques: \( x + y + z = 100 \)
Total value of cheques: \( 100x + 250y + 500z = 15250 \)
From \( x + y + z = 100 \), we get:
\( x = 100 - y - z \)
Substituting into the second equation: \[ 100(100 - y - z) + 250y + 500z = 15250 \] \[ 10000 - 100y - 100z + 250y + 500z = 15250 \] \[ 150y + 400z = 5250 \]
Divide the equation by 50: \[ 3y + 8z = 105 \] Now, we want to maximize the value of \( z \) (₹500 cheques).
We test integer values of \( y \) that make \( z \) an integer:
So the maximum integer value of \( z \) is 12 when \( y = 3 \).
Given \( x + y + z = 100 \), and \( y = 3, z = 12 \), we get:
\( x = 100 - 3 - 12 = 85 \)
Total value check:
\[ 100 \times 85 + 250 \times 3 + 500 \times 12 = 8500 + 750 + 6000 = 15250 \] ✅ Total matches correctly.
The maximum number of ₹500 cheques in the donation box is: \[ \boxed{12} \]
When $10^{100}$ is divided by 7, the remainder is ?