Question:

A dome of a building is in the form of a hemisphere. From inside, it was whitewashed at the cost of ₹4989.60. If the cost of whitewashing is ₹20 per square meter, find the
(i) inside surface area of the dome,
(ii) volume of the air inside the dome

Updated On: Dec 7, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) Cost of whitewashing the dome from inside = Rs 498.96 
Cost of white washing 1m2 area = Rs 2 
Therefore, CSA of the inner side of dome =\(\frac{4989.60}{20} \)= 249.48 m2


(ii) Let the inner radius of the hemispherical dome be r. 
CSA of inner side of dome = 249.48 m
\(2\pi r^2\) = 249.48 m2

\(⇒\) r2 = \(\frac{249.48}{2\pi}\) m2

\(⇒\) r2 = 249.48 \(÷\) (2 ×\(\frac{ 22}{7}\))
\(⇒\) r2 = 39.69
\(⇒\) r = \(\sqrt{39.69}\)
\(⇒\) r = 6.3 m
Volume of air inside the dome = Volume of hemispherical dome
\(=\frac{ 2}{3}\pi\)r3

\(= \frac{2}{3}\) × \(\frac{22}{7}\) × 6.3 m × 6.3 m × 6.3 m
= 523.9 m3 (approximately)
Therefore, the volume of air inside the dome is 523.9 m3

Was this answer helpful?
2
0