Step 1: Head available at the nozzle.
Apply Bernoulli between the liquid surface (pressure \(=2\ \text{bar}\), velocity \(\approx 0\), elevation \(z=h\)) and the nozzle exit (pressure \(=1\ \text{bar}\), elevation \(z=0.01\ \text{m}\)).
Pressure head difference:
\[
\frac{\Delta p}{\rho g}=\frac{(2-1)\times 10^{5}}{1000\times 10}=10\ \text{m}.
\]
Static head difference:
\[
h-z = 0.51-0.01=0.50\ \text{m}.
\]
Hence total head \(=10+0.50=10.5\ \text{m}\).
Step 2: Exit velocity and volumetric flow rate.
\[
v=\sqrt{2g(10.5)}=\sqrt{2\times10\times10.5}=\sqrt{210}=14.49\ \text{m s}^{-1}.
\]
Nozzle area \(A_n=\dfrac{\pi d^2}{4}=\dfrac{\pi(0.005)^2}{4}=1.963\times 10^{-5}\ \text{m}^2\).
\[
Q=A_n v=(1.963\times10^{-5})(14.49)=2.84\times10^{-4}\ \text{m}^3\text{/s}.
\]
Step 3: Tank area and rate of level drop.
Tank cross-sectional area \(A_t=\pi(0.25)^2=0.19635\ \text{m}^2\).
\[
\frac{dh}{dt}=-\frac{Q}{A_t}=-\frac{2.84\times10^{-4}}{0.19635}
=-1.447\times10^{-3}\ \text{m s}^{-1}=-1.447\ \text{mm s}^{-1}.
\]
Absolute value (initial):
\[
\boxed{1.45\ \text{mm s}^{-1}}.
\]