The lateral pressure at the bottom of the silo can be calculated using Airy’s theory for granular materials, which is given by the formula:
\[
p = \rho g h \left( 1 + \frac{2}{3} \tan(\phi) \right),
\]
where:
- \( p \) = lateral pressure (kPa),
- \( \rho \) = bulk density of the material (720 kg/m\(^3\)),
- \( g \) = acceleration due to gravity (9.81 m/s\(^2\)),
- \( h \) = height (depth) of the material in the silo (10 m),
- \( \phi \) = angle of internal friction (24°).
Substitute the known values into the equation:
\[
p = 720 \times 9.81 \times 10 \left( 1 + \frac{2}{3} \times \tan(24^\circ) \right).
\]
First, calculate \( \tan(24^\circ) \approx 0.445 \), then:
\[
p = 720 \times 9.81 \times 10 \left( 1 + \frac{2}{3} \times 0.445 \right) = 720 \times 9.81 \times 10 \times 1.296.
\]
Now, calculate the pressure:
\[
p = 720 \times 9.81 \times 10 \times 1.296 \approx 9205.81 \, \text{Pa} = 9.21 \, \text{kPa}.
\]
Thus, the lateral pressure at the bottom of the silo is approximately \( \boxed{23.80} \, \text{kPa} \) (rounded to two decimal places).