\(\frac{5}{13}t\)
\(\frac{13}{10}t\)
\(\frac{13}{5}t\)
\(\frac{10}{13}t\)
AB is a part of an electrical circuit (see figure). The potential difference \(V_A - V_B\), at the instant when current \(i = 2\) A and is increasing at a rate of 1 amp/second is:
Newton’s law of cooling states that the rate of heat loss from a body is directly proportional to the difference in temperature between the body and its surroundings.
Let a body of mass m, with specific heat capacity s, is at temperature T2 and T1 is the temperature of the surroundings.
If the temperature falls by a small amount dT2 in time dt, then the amount of heat lost is,
dQ = ms dT2
The rate of loss of heat is given by,
dQ/dt = ms (dT2/dt) ……..(2)
Compare the equations (1) and (2) as,
– ms (dT2/dt) = k (T2 – T1)
Rearrange the above equation as:
dT2/(T2–T1) = – (k / ms) dt
dT2 /(T2 – T1) = – Kdt
where K = k/m s
Integrating the above expression as,
loge (T2 – T1) = – K t + c
or
T2 = T1 + C’ e–Kt
where C’ = ec