Step 1: Understanding geothermal gradient.
The geothermal gradient is the rate of temperature increase with depth. It is calculated by the formula:
\[
\text{Geothermal Gradient} = \frac{\text{Temperature Difference}}{\text{Depth}}
\]
The temperature difference is \( 275°C - 25°C = 250°C \). The depth is calculated using the lithostatic pressure, with the pressure increasing at 0.3 kbar/km. The depth is:
\[
\text{Depth} = \frac{3 \, \text{kbar}}{0.3 \, \text{kbar/km}} = 10 \, \text{km}
\]
Step 2: Calculation.
Now, calculate the geothermal gradient:
\[
\text{Geothermal Gradient} = \frac{250 \, °C}{10 \, \text{km}} = 25.0 \, °C/\text{km}
\]
Step 3: Conclusion.
The geothermal gradient is 25.0°C/km.
A magma having density of 2900 kg m\(^-3\) just reaches the surface through a two-layered crust as shown in the figure below. Assuming isostatic equilibrium, its depth of melting is .......... km. (Round off to one decimal place) 
Suppose a mountain at location A is in isostatic equilibrium with a column at location B, which is at sea-level, as shown in the figure. The height of the mountain is 4 km and the thickness of the crust at B is 1 km. Given that the densities of crust and mantle are 2700 kg/m\(^3\) and 3300 kg/m\(^3\), respectively, the thickness of the mountain root (r1) is km. (Answer in integer)


Two boreholes A and B, both inclined towards 270°, penetrate a dipping coal bed at the same point and pass through it entirely in the sub-surface as shown in the figure below. The bed dips towards 270°. The thickness of the coal bed, measured along the borehole A is 10 m and along borehole B is 8 m. The angle between the two boreholes is 20°. The orthogonal thickness \( x \) of the coal bed is ........ m. (Round off to one decimal place) 
A well-developed succession of laminated shale is bound by two volcanic ash beds that were precisely dated as shown in the schematic diagram given below. Assuming a constant sedimentation rate, the age of the fossiliferous limestone bed 65 m above the basal volcanic ash bed is ............ Ma. (Round off to nearest integer) 
The data tabulated below are for flooding events in the last 400 years.
The probability of a large flood accompanied by a glacial lake outburst flood (GLOF) in 2025 is ........... \(\times 10^{-3}\). (Round off to one decimal place)
| Year | Flood Size | Magnitude rank |
|---|---|---|
| 1625 | Large | 2 |
| 1658 | Large + GLOF | 1 |
| 1692 | Small | 4 |
| 1704 | Large | 2 |
| 1767 | Large | 2 |
| 1806 | Small | 4 |
| 1872 | Large + GLOF | 1 |
| 1909 | Large | 2 |
| 1932 | Large | 2 |
| 1966 | Medium | 3 |
| 2023 | Large + GLOF | 1 |
A satellite launching vehicle is carrying a lander for Moon mapping.
As shown in the figure below, P is the position where the gravitational forces exerted by Earth and Moon on the vehicle balance out.
The distance \( P \) from the center of the Earth is ........... \(\times 10^5\) km. (Round off to two decimal places)
The isobaric temperature-composition (T–X) phase diagram given below shows the phase relation between components M and N. The equilibrium melting undergone by the rock R to generate the liquid of composition L is .............. % (In integer )