A cricket ball of mass 150g moving with a speed of 126km/h hits at the middle of the bat, held firmly at its position by the batsman. The ball moves straight back to the bowler after hitting the bat. Assuming that collision between ball and bat is completely elastic and the two remain in contact for 0.001s, the force that the batsman had to apply to hold the bat firmly at its place would be
Updated On: Jul 5, 2022
10.5N
21N
10.5×104N
2.1×104N
Hide Solution
Verified By Collegedunia
The Correct Option isC
Solution and Explanation
Force =timechange in momentum=tmv−(mv)=t2mv
Here m=150g=0.15kg, t=0.001s,
v=126km/h=35m/s=0.001s2(0.15kg)(35m/s)=10500N=1.05×104N
Work is correlated to force and the displacement over which it acts. When an object is replaced parallel to the force's line of action, it is thought to be doing work. It is a force-driven action that includes movement in the force's direction.
The work done by the force is described to be the product of the elements of the force in the direction of the displacement and the magnitude of this displacement.
Energy:
A body's energy is its potential to do tasks. Anything that has the capability to work is said to have energy. The unit of energy is the same as the unit of work, i.e., the Joule.
There are two types of mechanical energy such as; Kinetic and potential energy.
Power is the rate at which energy is transferred, conveyed, or converted or the rate of doing work. Technologically, it is the amount of work done per unit of time. The SI unit of power is Watt (W) which is joules per second (J/s). Sometimes the power of motor vehicles and other machines is demonstrated in terms of Horsepower (hp), which is roughly equal to 745.7 watts.
Power is a scalar quantity, which gives us a quantity or amount of energy consumed per unit of time but with no manifestation of direction.