Applying energy conservation, we have
$$
U _{ i }+ K _{ i }= U _{ f }+ K _{ f }
$$
Where, $U _{ i }=$ initial potential energy of the (block + pulley) system
$U _{ f }=$ final potential energy of the (block+pulley) system
$K _{ i }=$ initial kinetic energy of the system
$K _{ f }=$ final kinetic energy of the system
Here, initial situation corresponds to rest position of the system and final situation correspond to position after falling through height $h$.
Eg. (i) gives $0+0=- mgh +\frac{1}{2} mv ^{2}+\frac{1}{2} 1 \omega^{2}$
$$
\begin{aligned}
\Rightarrow mgh &=\frac{1}{2} m (\omega r )^{2}+\frac{1}{2} l \omega^{2} \\
&=\frac{1}{2} m \omega^{2} r ^{2}+\frac{1}{2} l \omega^{2}
\end{aligned}
$$
$\Rightarrow 2 mgh =\omega^{2}\left[ mr ^{2}+1\right]$
$\Rightarrow \omega^{2}=\frac{2 mgh }{1+ mr ^{2}}$
$\Rightarrow \omega=\left[\frac{2 mgh }{1+ mr ^{2}}\right]^{1 / 2}$