26.66 m
From the question we know that,
\(r\) = 5 cm
Volume of sphere \((V)\) = \(\frac{4}{3} \pi r^3\)
= \(\frac{4}{3} \pi (5)^3\)
= \(\frac{4}{3} \pi \times 125\)
\(\frac{500}{3} cm^3\)
=Volumn of wire \((Vw)\) = \(\pi r^2 \times length\)
\(r\ wire\) = \(\frac{0.5}{2}\) (as 0.5 is diameter)
= 0.25 cm
\(V w\) = \(\pi \times (0.25)^2 \times L\)
= \(\pi \times (0.0625) cm^2 \times L\)
= \(0.0625 \pi Lcm^3\)
\(\frac{500}{3} \pi\) = \(0.0625 \pi L\)
= \(\frac{500}{3} = 0.0625 \times L\)
\(L = \frac{500}{3 \times 0.0625}\)
\(L = \frac{500}{0.1875}\)
\(L\) ≈ 266.67 cm
\(L\) (in meter) = \(\frac{266.67}{100}\)
= 26.67 ≈ 26.66 m
The correct option is (D): 26.66 m