Time period \( T \propto \frac{1}{\sqrt{B_H}} \), where \( B_H = B \cos \theta \) is horizontal component.
\[
\frac{T_1}{T_2} = \frac{1}{\sqrt{B_1 \cos 45^\circ}} \cdot \sqrt{B_2 \cos 30^\circ}
= \sqrt{\frac{B_2 \cdot \frac{\sqrt{3}}{2}}{B_1 \cdot \frac{1}{\sqrt{2}}}} = \sqrt{\frac{B_2 \cdot \sqrt{3}}{2B_1 / \sqrt{2}}}
\]
Given: \( T_1 = \frac{60}{20} = 3\, \text{s}, T_2 = \frac{60}{30} = 2\, \text{s} \Rightarrow \frac{3}{2} = \sqrt{\frac{B_2 \sqrt{3}}{B_1 \sqrt{2}}} \Rightarrow \frac{B_1}{B_2} = \frac{2\sqrt{2}}{3\sqrt{3}} \)