Step 1: Potential vorticity (PV) conservation for a column.
For a shallow air column of thickness \(H\) at a fixed latitude, PV is
\[
q=\frac{f+\zeta}{H}=\text{constant},
\]
where \(f=2\Omega\sin\phi\) is the Coriolis parameter and \(\zeta\) is the relative vorticity.
Step 2: Initial and final states.
Latitude \(30^\circ\Rightarrow f=2\Omega\sin30^\circ=2(7.3\times10^{-5})(0.5)=7.3\times10^{-5}~\mathrm{s^{-1}}\).
Initially: \(\zeta_0=0\), \(H_0=10~\mathrm{km}\Rightarrow q_0=f/H_0\).
Over the mountain: \(\zeta_1=-3.65\times10^{-5}~\mathrm{s^{-1}}\), column thickness \(H_1\) (reduced by the terrain height).
Step 3: Apply PV conservation at same latitude.
\[
\frac{f}{H_0}=\frac{f+\zeta_1}{H_1}
\Rightarrow
H_1=H_0\,\frac{f+\zeta_1}{f}
=10\,\frac{7.3-3.65}{7.3}
=10\times \frac{3.65}{7.3}
=10\times 0.5=5~\mathrm{km}.
\]
Step 4: Mountain height.
Height \(=H_0-H_1=10-5=5~\mathrm{km}\).
Final Answer:
\[
\boxed{5~\text{km}}
\]