A coin has a true probability \( \mu \) of turning up Heads. This coin is tossed 100 times and shows up Heads 60 times. The following hypothesis is tested:
\[ H_0: \mu = 0.5 \quad ({Null Hypothesis}), \quad H_1: \mu>0.5 \quad ({Alternative Hypothesis}) \]
Using the Central Limit Theorem, the \( p \)-value of the above test is ________ (round off to three decimal places).
Hint: If Z is a random variable that follows a standard normal distribution, then P (Z ≤ 2) = 0.977.
P and Q play chess frequently against each other. Of these matches, P has won 80% of the matches, drawn 15% of the matches, and lost 5% of the matches.
If they play 3 more matches, what is the probability of P winning exactly 2 of these 3 matches?
If A and B are two events such that \( P(A \cap B) = 0.1 \), and \( P(A|B) \) and \( P(B|A) \) are the roots of the equation \( 12x^2 - 7x + 1 = 0 \), then the value of \(\frac{P(A \cup B)}{P(A \cap B)}\)
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate
In the following figure, four overlapping shapes (rectangle, triangle, circle, and hexagon) are given. The sum of the numbers which belong to only two overlapping shapes is ________