The equation of $I_1 (t) , I_2 (t)$ and $B(t)$ will take the following forms
$I_1 (t) = K_1 (1 - e^{-k \, 2t} ) \rightarrow$ current growth in L - R circuit
$B(t) = K_3 (1 - e^{-k \, 2t} ) \rightarrow B(t) \propto I_1 (t)$
$I_2 (t) = K_4e^{-k\, 2t}$
$\left[ I_2 (t) = \frac{e_2}{R} \, and \, e_2 \, \propto = - M \frac{dI_1}{dt}\right]$
Therefore, the product
$I_2 (t) B (t) = K_5 e^{-k \, 2t} ( 1 - e^{-k \, 2t})$
The value of this product zero at $t = 0$ and $t = 0$ . Therefore, the product will pass throiigh a maximum value.