The correct answer is (D) : Doubled
As number of turns are halved so length of wire is halved, and radius is doubled, then area will be 4 times the previous one if previous resistance is R then new resistance is R/8 and if previous emf is E then new emf will be E/2 so
\(P_i=\frac{E_2}{R}\)
\(P_f=\frac{(\frac{E}{2})^2}{\frac{R}{8}}\)
\(=\frac{2E^2}{R}=2P_i\)
Because of the changes in answer key, students can challenge this question.
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where