\(B = \frac{\mu_0 n I}{2R}\)
\(37.68 \times 10^{-4} = \frac{4\pi \times 10^{-7} \times 100I}{2 \times 5 \times 10^{-2}}\)
\(I = \frac{300\, \text{A}}{100}\)
\(I= 3A\)
So, the answer is 3A.

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where