

Surface area of the tent \(=2\pi rh+\pi rl\)
\(=\pi r(2h+1)\)
\(=\frac{22}{7}×70(2×3+80)\)
\(=18920\)
Width of the canvas \(=2m\)
∴Length of the Canvas required to make the tent \(=\frac{18920}{2}=9460\) m
Hence, option C is the correct answer. The correct option is (C): 9460 m
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. (\(\pi = 3.14\)) 
Activity : 
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14. 
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\phantom{\pi r^2}}\) = \(\frac{\boxed{\phantom{90}}}{360} \times 3.14 \times 10^2\) = \(\frac{1}{4} \times \boxed{\phantom{314}}\) <br>
A(P-AXB) = \(\boxed{\phantom{78.5}}\) sq. cm.