M.I. of complete disc about its centre $O$.
$I_{Total}=\frac{1}{2}MR^{2} \, ...\left(i\right)$
Mass of circular hole $\left(removed\right)$
$=\frac{M}{4}\left(As\,M=\pi R^{2}\,t \therefore M\,\propto\,R^{2}\right)$
M.I. of removed hole about its own axis
$=\frac{1}{2}\left(\frac{M}{4}\right)\left(\frac{R}{2}\right)^{2}=\frac{1}{32} \,MR^{2}$
$M.I.$ of removed hole about $O'$
$I_{removed hole }=I_{cm}+mx^{2}$
$=\frac{MR^{2}}{32}+\frac{M}{4}\left(\frac{R}{2}\right)^{2}$
$=\frac{MR^{2}}{32}+\frac{MR^{2}}{16}=\frac{3MR^{2}}{32}$
$M.I.$ of complete disc can also be written as
$I_{Total}=I_{removed hole}+I_{remaining disc}$
$I_{Total}=\frac{3MR^{2}}{32}+I_{remaining disc}\, ...\left(ii\right)$
From e $\left(i\right)$ and $\left(ii\right),$
$\frac{1}{2}MR^{2}=\frac{3MR^{2}}{32}+I_{remaining disc}$
$\Rightarrow I_{remaining disc}$
$=\frac{MR^{2}}{2}-\frac{3MR^{2}}{32}=\left(\frac{13}{32}\right)MR^{2}$