Step 1: Understanding the Question:
This question asks for the maximum electromotive force (emf) induced in a coil rotating in a uniform magnetic field. This is the basic principle of an AC generator.
Step 2: Key Formula or Approach:
The emf induced in a coil with N turns, area A, rotating with angular velocity \(\omega\) in a uniform magnetic field B is given by \( \epsilon = NBA\omega \sin(\omega t) \).
The maximum emf (\(\epsilon_{max}\)) occurs when \( \sin(\omega t) = 1 \).
Thus, \( \epsilon_{max} = NBA\omega \).
Step 3: Detailed Explanation:
Given values:
Number of turns, N = 20
Radius of the coil, r = 8.0 cm = 0.08 m
Angular speed, \(\omega\) = 50 rad s\(^{-1}\)
Magnetic field, B = 3.0 \( \times \) 10\(^{-2}\) T
First, calculate the area of the coil, A:
\[ A = \pi r^2 = \pi (0.08 \text{ m})^2 = 0.0064\pi \text{ m}^2 \]
Now, use the formula for the maximum induced emf:
\[ \epsilon_{max} = N B A \omega \]
\[ \epsilon_{max} = 20 \times (3.0 \times 10^{-2} \text{ T}) \times (0.0064\pi \text{ m}^2) \times (50 \text{ rad s}^{-1}) \]
Let's group the terms for easier calculation:
\[ \epsilon_{max} = (20 \times 50) \times (3.0 \times 10^{-2}) \times (0.0064\pi) \]
\[ \epsilon_{max} = 1000 \times (3.0 \times 10^{-2}) \times (0.0064\pi) \]
\[ \epsilon_{max} = 30 \times 0.0064\pi = 0.192\pi \text{ V} \]
Using the value of \( \pi \approx 3.14159 \):
\[ \epsilon_{max} \approx 0.192 \times 3.14159 \approx 0.60318 \text{ V} \]
The question asks for the answer in units of \( \times 10^{-2} \) volt.
\[ \epsilon_{max} = 0.60318 \text{ V} = 60.318 \times 10^{-2} \text{ V} \]
Rounding off to the nearest integer, we get 60.
Step 4: Final Answer:
The maximum emf induced in the coil is 60 \( \times \) 10\(^{-2}\) volt.