Initial magnetic flux through the coil,
$\phi_{i}=B_{H}Acos\theta=3.0\times10^{-5}\times\left(\pi\times10^{-2}\right)\times cos0^{\circ}$
$\quad =3\pi\times10^{-7}\,Wb$
Final magnetic flux after the rotation
$\phi_{i}=3.0\times10^{-5}\times\left(\pi\times10^{-2}\right)\times cos180^{\circ}$
$\quad =3\pi\times10^{-7}\,Wb$
Induced emf, $\varepsilon=-N \frac{d\phi}{dt}=-\frac{N\left(\phi_{f} -\phi_{i}\right)}{t}$
$=-\frac{500\left(-3\pi\times10^{-7}-3\pi\times10^{-7}\right)}{0.25}$
$=\frac{500\times\left(6\pi\times10^{-7}\right)}{0.25}=3.8\times10^{-3}\,V$
$I=\frac{\varepsilon}{R}=\frac{3.8\times10^{-3}\,V}{2\,\Omega}=1.9\times10^{-3}\,A$