\( \frac{1}{2\pi} \sqrt{\frac{Qq}{4\pi \varepsilon_0 R m}} \)
\( \frac{1}{2\pi} \sqrt{\frac{Qq}{4\pi \varepsilon_0 m R^2}} \)
\( \frac{1}{2\pi} \sqrt{\frac{Qq}{4\pi \varepsilon_0 m R}} \)
Hide Solution
Verified By Collegedunia
The Correct Option isA
Solution and Explanation
Electric field inside solid sphere varies linearly:
\[
E = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Qr}{R^3} \Rightarrow F = qE = \frac{Qqr}{4\pi \varepsilon_0 R^3}
\]
This is like \( F = -kr \), so SHM with
\[
\omega^2 = \frac{Qq}{4\pi \varepsilon_0 R^3 m} \Rightarrow f = \frac{1}{2\pi} \sqrt{\frac{Qq}{4\pi \varepsilon_0 R^3 m}}
\]