The radius of curvature in a magnetic field is given by:
\[
r = \frac{mv}{qB}
\]
Kinetic energy:
\[
K.E = \frac{1}{2}mv^2 \Rightarrow v \propto \sqrt{K.E}
\]
If kinetic energy becomes half:
\[
v' = v \cdot \frac{1}{\sqrt{2}} \Rightarrow r' = \frac{mv'}{qB} = r \cdot \frac{1}{\sqrt{2}}
\]
So, the radius decreases by a factor of \( \frac{1}{\sqrt{2}} \).