1. Concept Overview
The electrostatic energy ($U$) stored in a region with an electric field $\mathbf{E}$ is given by the integral over the volume:
$$U = \int \frac{1}{2} \epsilon E^2 \, dV$$
where:
$\epsilon = \epsilon_0 \epsilon_r$ is the permittivity of the medium.
$dV = 4\pi r^2 dr$ is the differential volume element for spherical symmetry.
We need to calculate the energy stored inside the sphere ($U_{in}$) and outside the sphere ($U_{out}$) separately and then find the ratio $U_{in}/U_{out}$.
2. Electric Field Calculations
Case A: Outside the sphere ($r > a$)
For points outside the sphere, the electric field behaves as if all charge is concentrated at the center. The medium outside is usually vacuum/air ($\epsilon_r = 1$).
$$E_{out} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$
Case B: Inside the sphere ($r < a$)
Using Gauss's Law for a dielectric medium:
$$\oint \mathbf{D} \cdot d\mathbf{A} = q_{enclosed}$$
Where $\mathbf{D} = \epsilon \mathbf{E} = \epsilon_0 \epsilon_r \mathbf{E}$.
The charge enclosed within radius $r$ is a fraction of the total charge $q$ based on volume ratio:
$$q_{enclosed} = q \left( \frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi a^3} \right) = q \frac{r^3}{a^3}$$
Applying Gauss's Law:
$$\epsilon_0 \epsilon_r E_{in} (4\pi r^2) = q \frac{r^3}{a^3}$$
$$E_{in} = \frac{1}{4\pi\epsilon_0 \epsilon_r} \frac{q r}{a^3}$$
3. Calculate Energy Stored Outside ($U_{out}$)
Limits of integration: $r = a$ to $r = \infty$.
Permittivity outside: $\epsilon = \epsilon_0$.
$$U_{out} = \int_{a}^{\infty} \frac{1}{2} \epsilon_0 E_{out}^2 (4\pi r^2) \, dr$$
Substitute $E_{out} = \frac{q}{4\pi\epsilon_0 r^2}$:
$$U_{out} = \frac{1}{2} \epsilon_0 \int_{a}^{\infty} \left( \frac{q}{4\pi\epsilon_0 r^2} \right)^2 4\pi r^2 \, dr$$
$$U_{out} = \frac{1}{2} \epsilon_0 \frac{q^2}{16\pi^2 \epsilon_0^2} 4\pi \int_{a}^{\infty} \frac{1}{r^2} \, dr$$
$$U_{out} = \frac{q^2}{8\pi \epsilon_0} \left[ -\frac{1}{r} \right]_a^{\infty}$$
$$U_{out} = \frac{q^2}{8\pi \epsilon_0} \left( 0 - \left(-\frac{1}{a}\right) \right)$$
$$U_{out} = \frac{q^2}{8\pi \epsilon_0 a}$$
4. Calculate Energy Stored Inside ($U_{in}$)
Limits of integration: $r = 0$ to $r = a$.
Permittivity inside: $\epsilon = \epsilon_0 \epsilon_r$.
$$U_{in} = \int_{0}^{a} \frac{1}{2} (\epsilon_0 \epsilon_r) E_{in}^2 (4\pi r^2) \, dr$$
Substitute $E_{in} = \frac{q r}{4\pi\epsilon_0 \epsilon_r a^3}$:
$$U_{in} = \frac{1}{2} (\epsilon_0 \epsilon_r) \int_{0}^{a} \left( \frac{q r}{4\pi\epsilon_0 \epsilon_r a^3} \right)^2 4\pi r^2 \, dr$$
$$U_{in} = \frac{1}{2} (\epsilon_0 \epsilon_r) \frac{q^2}{(16\pi^2 \epsilon_0^2 \epsilon_r^2 a^6)} 4\pi \int_{0}^{a} r^4 \, dr$$
Simplify constants:
$$U_{in} = \frac{q^2}{8\pi \epsilon_0 \epsilon_r a^6} \int_{0}^{a} r^4 \, dr$$
$$U_{in} = \frac{q^2}{8\pi \epsilon_0 \epsilon_r a^6} \left[ \frac{r^5}{5} \right]_0^a$$
$$U_{in} = \frac{q^2}{8\pi \epsilon_0 \epsilon_r a^6} \cdot \frac{a^5}{5}$$
$$U_{in} = \frac{q^2}{40\pi \epsilon_0 \epsilon_r a}$$
5. Calculate the Ratio
We need the ratio $\frac{U_{in}}{U_{out}}$.
$$\text{Ratio} = \frac{ \frac{q^2}{40\pi \epsilon_0 \epsilon_r a} }{ \frac{q^2}{8\pi \epsilon_0 a} }$$
Canceling common terms ($q^2, \pi, \epsilon_0, a$):
$$\text{Ratio} = \frac{ \frac{1}{40 \epsilon_r} }{ \frac{1}{8} }$$
$$\text{Ratio} = \frac{8}{40 \epsilon_r} = \frac{1}{5 \epsilon_r}$$
Given $\epsilon_r = 2$:
$$\text{Ratio} = \frac{1}{5(2)} = \frac{1}{10}$$
$$\text{Ratio} = 0.1$$
Final Answer
The ratio of the electrostatic energy stored inside the sphere to that stored outside is 0.1.


