1. Concept Overview
The electrostatic energy ($U$) stored in a region with an electric field $\mathbf{E}$ is given by the integral over the volume:
$$U = \int \frac{1}{2} \epsilon E^2 \, dV$$
where:
$\epsilon = \epsilon_0 \epsilon_r$ is the permittivity of the medium.
$dV = 4\pi r^2 dr$ is the differential volume element for spherical symmetry.
We need to calculate the energy stored inside the sphere ($U_{in}$) and outside the sphere ($U_{out}$) separately and then find the ratio $U_{in}/U_{out}$.
2. Electric Field Calculations
Case A: Outside the sphere ($r > a$)
For points outside the sphere, the electric field behaves as if all charge is concentrated at the center. The medium outside is usually vacuum/air ($\epsilon_r = 1$).
$$E_{out} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$$
Case B: Inside the sphere ($r < a$)
Using Gauss's Law for a dielectric medium:
$$\oint \mathbf{D} \cdot d\mathbf{A} = q_{enclosed}$$
Where $\mathbf{D} = \epsilon \mathbf{E} = \epsilon_0 \epsilon_r \mathbf{E}$.
The charge enclosed within radius $r$ is a fraction of the total charge $q$ based on volume ratio:
$$q_{enclosed} = q \left( \frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi a^3} \right) = q \frac{r^3}{a^3}$$
Applying Gauss's Law:
$$\epsilon_0 \epsilon_r E_{in} (4\pi r^2) = q \frac{r^3}{a^3}$$
$$E_{in} = \frac{1}{4\pi\epsilon_0 \epsilon_r} \frac{q r}{a^3}$$
3. Calculate Energy Stored Outside ($U_{out}$)
Limits of integration: $r = a$ to $r = \infty$.
Permittivity outside: $\epsilon = \epsilon_0$.
$$U_{out} = \int_{a}^{\infty} \frac{1}{2} \epsilon_0 E_{out}^2 (4\pi r^2) \, dr$$
Substitute $E_{out} = \frac{q}{4\pi\epsilon_0 r^2}$:
$$U_{out} = \frac{1}{2} \epsilon_0 \int_{a}^{\infty} \left( \frac{q}{4\pi\epsilon_0 r^2} \right)^2 4\pi r^2 \, dr$$
$$U_{out} = \frac{1}{2} \epsilon_0 \frac{q^2}{16\pi^2 \epsilon_0^2} 4\pi \int_{a}^{\infty} \frac{1}{r^2} \, dr$$
$$U_{out} = \frac{q^2}{8\pi \epsilon_0} \left[ -\frac{1}{r} \right]_a^{\infty}$$
$$U_{out} = \frac{q^2}{8\pi \epsilon_0} \left( 0 - \left(-\frac{1}{a}\right) \right)$$
$$U_{out} = \frac{q^2}{8\pi \epsilon_0 a}$$
4. Calculate Energy Stored Inside ($U_{in}$)
Limits of integration: $r = 0$ to $r = a$.
Permittivity inside: $\epsilon = \epsilon_0 \epsilon_r$.
$$U_{in} = \int_{0}^{a} \frac{1}{2} (\epsilon_0 \epsilon_r) E_{in}^2 (4\pi r^2) \, dr$$
Substitute $E_{in} = \frac{q r}{4\pi\epsilon_0 \epsilon_r a^3}$:
$$U_{in} = \frac{1}{2} (\epsilon_0 \epsilon_r) \int_{0}^{a} \left( \frac{q r}{4\pi\epsilon_0 \epsilon_r a^3} \right)^2 4\pi r^2 \, dr$$
$$U_{in} = \frac{1}{2} (\epsilon_0 \epsilon_r) \frac{q^2}{(16\pi^2 \epsilon_0^2 \epsilon_r^2 a^6)} 4\pi \int_{0}^{a} r^4 \, dr$$
Simplify constants:
$$U_{in} = \frac{q^2}{8\pi \epsilon_0 \epsilon_r a^6} \int_{0}^{a} r^4 \, dr$$
$$U_{in} = \frac{q^2}{8\pi \epsilon_0 \epsilon_r a^6} \left[ \frac{r^5}{5} \right]_0^a$$
$$U_{in} = \frac{q^2}{8\pi \epsilon_0 \epsilon_r a^6} \cdot \frac{a^5}{5}$$
$$U_{in} = \frac{q^2}{40\pi \epsilon_0 \epsilon_r a}$$
5. Calculate the Ratio
We need the ratio $\frac{U_{in}}{U_{out}}$.
$$\text{Ratio} = \frac{ \frac{q^2}{40\pi \epsilon_0 \epsilon_r a} }{ \frac{q^2}{8\pi \epsilon_0 a} }$$
Canceling common terms ($q^2, \pi, \epsilon_0, a$):
$$\text{Ratio} = \frac{ \frac{1}{40 \epsilon_r} }{ \frac{1}{8} }$$
$$\text{Ratio} = \frac{8}{40 \epsilon_r} = \frac{1}{5 \epsilon_r}$$
Given $\epsilon_r = 2$:
$$\text{Ratio} = \frac{1}{5(2)} = \frac{1}{10}$$
$$\text{Ratio} = 0.1$$
Final Answer
The ratio of the electrostatic energy stored inside the sphere to that stored outside is 0.1.
(i) Study the diagram and name the parts marked as A, B, C, and D.
(ii) Write the function of A and C.
