A catalyst particle is modeled as a symmetrical double cone solid as shown in the figure. For each conical sub-part, the radius of the base is \( r \) and the height is \( h \). The sphericity of the particle is given by:

The sphericity of a particle is a measure of how closely the shape of the particle approximates that of a sphere. It is given by the formula:
\[ \phi = \frac{\text{Surface area of a sphere with same volume}}{\text{Surface area of the particle}} \]
For a double-cone shape:
Volume of a single cone:
\[
V_{\text{cone}} = \frac{1}{3} \pi r^2 h
\]
Surface area of a single cone:
\[
A_{\text{cone}} = \pi r \sqrt{r^2 + h^2}
\]
Since the particle consists of two identical cones, the total volume \( V_{\text{total}} \) and total surface area \( A_{\text{total}} \) are:
\[ V_{\text{total}} = 2 \times \frac{1}{3} \pi r^2 h = \frac{2}{3} \pi r^2 h \] \[ A_{\text{total}} = 2 \times \pi r \sqrt{r^2 + h^2} = 2 \pi r \sqrt{r^2 + h^2} \]
Now, the volume of a sphere with the same volume as the double cone is: \[ V_{\text{sphere}} = \frac{4}{3} \pi R^3 \] Equating the volumes of the sphere and the double cone: \[ \frac{4}{3} \pi R^3 = \frac{2}{3} \pi r^2 h \] Solving for \( R \): \[ R = \left( \frac{r^2 h}{2} \right)^{1/3} \]
The surface area of the sphere with radius \( R \) is: \[ A_{\text{sphere}} = 4 \pi R^2 = 4 \pi \left( \frac{r^2 h}{2} \right)^{2/3} \]
Finally, the sphericity \( \phi \) is the ratio of the surface area of the sphere to the surface area of the double cone: \[ \phi = \frac{4 \pi \left( \frac{r^2 h}{2} \right)^{2/3}}{2 \pi r \sqrt{r^2 + h^2}} = \frac{2 \left( \frac{r^2 h}{2} \right)^{2/3}}{r \sqrt{r^2 + h^2}} \]
Thus, the correct answer is (C).
An electrical wire of 2 mm diameter and 5 m length is insulated with a plastic layer of thickness 2 mm and thermal conductivity \( k = 0.1 \) W/(m·K). It is exposed to ambient air at 30°C. For a current of 5 A, the potential drop across the wire is 2 V. The air-side heat transfer coefficient is 20 W/(m²·K). Neglecting the thermal resistance of the wire, the steady-state temperature at the wire-insulation interface __________°C (rounded off to 1 decimal place).

GIVEN:
Kinematic viscosity: \( \nu = 1.0 \times 10^{-6} \, {m}^2/{s} \)
Prandtl number: \( {Pr} = 7.01 \)
Velocity boundary layer thickness: \[ \delta_H = \frac{4.91 x}{\sqrt{x \nu}} \]
The first-order irreversible liquid phase reaction \(A \to B\) occurs inside a constant volume \(V\) isothermal CSTR with the initial steady-state conditions shown in the figure. The gain, in kmol/m³·h, of the transfer function relating the reactor effluent \(A\) concentration \(c_A\) to the inlet flow rate \(F\) is:

A hot plate is placed in contact with a cold plate of a different thermal conductivity as shown in the figure. The initial temperature (at time $t = 0$) of the hot plate and cold plate are $T_h$ and $T_c$, respectively. Assume perfect contact between the plates. Which one of the following is an appropriate boundary condition at the surface $S$ for solving the unsteady state, one-dimensional heat conduction equations for the hot plate and cold plate for $t>0$?

The following data is given for a ternary \(ABC\) gas mixture at 12 MPa and 308 K:

\(y_i\): mole fraction of component \(i\) in the gas mixture
\(\hat{\phi}_i\): fugacity coefficient of component \(i\) in the gas mixture at 12 MPa and 308 K
The fugacity of the gas mixture is _________ MPa (rounded off to 3 decimal places).