Efficiency: \( \eta = 1 - \frac{T_C}{T_H} \)
At 25%:
\[
0.25 = 1 - \frac{250}{T_H} \Rightarrow T_H = \frac{250}{0.75} = 333.33\ \text{K}
\]
At 50%:
\[
0.5 = 1 - \frac{T_C'}{T_H} \Rightarrow T_C' = 0.5 \cdot 333.33 = 166.67\ \text{K}
\]
Increase in temp = \( 166.67 - 250 = -83.33 \), but correction: sink is cold end, so actually high temp end must be increased.
Use:
\[
T_H = \frac{250}{1 - 0.25} = 333.33,\quad T_H' = \frac{250}{1 - 0.5} = 500
\Rightarrow \Delta T = 500 - 333.33 = 166.67\ \text{K} = \frac{1}{6} \times 10^3 = \frac{1}{6} \cdot 1000 = 166.67
\]