Step 1: Identify given data
Mass of bullet, \(m = 20 \text{ g} = 0.02 \text{ kg}\)
Initial velocity, \(u = 500 \text{ ms}^{-1}\)
Distance penetrated, \(s = 1 \text{ cm} = 0.01 \text{ m}\)
Final velocity, \(v = 0 \text{ ms}^{-1}\) (since bullet comes to rest)
Step 2: Use the equation of motion to find acceleration \(a\)
Using \(v^2 = u^2 + 2as\),
\[
0 = (500)^2 + 2 \times a \times 0.01
\]
\[
a = -\frac{(500)^2}{2 \times 0.01} = -\frac{250000}{0.02} = -12,500,000 \text{ ms}^{-2}
\]
Step 3: Calculate retarding force \(F\)
Using Newton's second law,
\[
F = m \times |a| = 0.02 \times 12,500,000 = 250,000 \text{ N}
\]
Step 4: Conclusion
The retarding force experienced by the bullet is \(250 \times 10^3 \text{ N}\).