Step 1: Identify the vertical component of velocity.
The initial velocity is given as \( u = 100 \) m/s. The vertical component is:
\[
u_y = u \sin 30^\circ = 100 \times \frac{1}{2} = 50 \text{ m/s}
\]
Step 2: Use the kinematic equation for maximum height.
At the maximum height, the final vertical velocity is zero (\( v_y = 0 \)), so we use:
\[
v_y^2 = u_y^2 - 2 g h_{\max}
\]
Substituting values:
\[
0 = (50)^2 - 2 (9.81) h_{\max}
\]
Step 3: Solve for \( h_{\max} \).
\[
h_{\max} = \frac{(50)^2}{2 \times 9.81} = \frac{2500}{19.62} \approx 127.6 \text{ m}
\]
Step 4: Interpret the result.
Since we need the height above the original horizontal level (not the launch point), the total height is:
\[
h_{\max} + 23.2 = 150.8 \text{ m}
\]
Thus, the correct answer is 150.8 m.