Initial temperature, T1 = 40°C
Final temperature, T2 = 250°C
Change in temperature, ΔT = T2 – T1 = 210°C
Length of the brass rod at T1, l1 = 50 cm
Diameter of the brass rod at T1, d1 = 3.0 mm
Length of the steel rod at T2, l2 = 50 cm
Diameter of the steel rod at T2, d2 = 3.0 mm
Coefficient of linear expansion of brass, α1 = 2.0 × 10–5K–1
Coefficient of linear expansion of steel, α2 = 1.2 × 10–5K–1
For the expansion in the brass rod, we have:
\(\frac{Change\, in \,length (Δ_{l1})}{Original\, length (l_1)}\) = α1ΔT
∴ Δl1 = 50 x (2.1 x 10-5) x 210
= 0.2205 cm
For the expansion in the steel rod, we have:
Change in length (Δl2)/Original length (l2) = α2ΔT
∴ Δl2 = 50 x (1.2 x 10-5) x 210
= 0.126 cm
Total change in the lengths of brass and steel,
Δl = Δl1 + Δl2
= 0.2205 + 0.126
= 0.346 cm
Total change in the length of the combined rod = 0.346 cm
Since the rod expands freely from both ends, no thermal stress is developed at the junction.
List-I (Molecule / Species) | List-II (Property / Shape) |
---|---|
(A) \(SO_2Cl_2\) | (I) Paramagnetic |
(B) NO | (II) Diamagnetic |
(C) \(NO^{-}_{2}\) | (III) Tetrahedral |
(D) \(I^{-}_{3}\) | (IV) Linear |
Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?
Thermal expansion is the tendency of matter to change its shape, area, and volume in response to a change in temperature. Temperature is a monotonic function of the average molecular kinetic energy of a substance.
The expansion of the solid material is taken to be the linear expansion coefficient, as the expansion takes place in terms of height, thickness and length. The gaseous and liquid expansion takes the volume expansion coefficient. Normally, if the material is fluid, we can explain the changes in terms of volume change.
The bonding force among the molecules and atoms differs from material to material. These characteristics of the compounds and elements are known as the expansion coefficient.