The total number of balls in the box is: \[ 3 \text{ (blue)} + 2 \text{ (white)} + 4 \text{ (red)} = 9 \text{ balls} \] The number of balls that are not white is: \[ 3 \text{ (blue)} + 4 \text{ (red)} = 7 \text{ balls} \] Thus, the probability that a ball drawn at random is not white is: \[ P(\text{not white}) = \frac{\text{Number of non-white balls}}{\text{Total number of balls}} = \frac{7}{9} \]
The correct option is (C): \(\frac{7}{9}\)
If A is any event associated with sample space and if E1, E2, E3 are mutually exclusive and exhaustive events. Then which of the following are true?
(A) \(P(A) = P(E_1)P(E_1|A) + P(E_2)P(E_2|A) + P(E_3)P(E_3|A)\)
(B) \(P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2) + P(A|E_3)P(E_3)\)
(C) \(P(E_i|A) = \frac{P(A|E_i)P(E_i)}{\sum_{j=1}^{3} P(A|E_j)P(E_j)}, \; i=1,2,3\)
(D) \(P(A|E_i) = \frac{P(E_i|A)P(E_i)}{\sum_{j=1}^{3} P(E_i|A)P(E_j)}, \; i=1,2,3\)
Choose the correct answer from the options given below: