First, determine the acceleration due to gravity \( g \) on the planet. The body is thrown upwards with an initial velocity \( u = 20 \, \text{ms}^{-1} \) and returns to the surface in 2 s. The time to reach the maximum height (where velocity becomes zero) is half of the total time, so \( t_{\text{up}} = 1 \, \text{s} \). Using the equation of motion:
\[
v = u - g t \quad \text{(at maximum height, } v = 0\text{)}
\]
\[
0 = 20 - g \times 1 \quad \Rightarrow \quad g = 20 \, \text{ms}^{-2}
\]
Now, calculate the time period of the simple pendulum. The time period \( T \) of a simple pendulum is given by:
\[
T = 2\pi \sqrt{\frac{l}{g}}
\]
Given the length of the pendulum \( l = \frac{20}{\pi^2} \, \text{m} \), and \( g = 20 \, \text{ms}^{-2} \), substitute the values:
\[
T = 2\pi \sqrt{\frac{\frac{20}{\pi^2}}{20}} = 2\pi \sqrt{\frac{20}{\pi^2 \times 20}} = 2\pi \sqrt{\frac{1}{\pi^2}} = 2\pi \times \frac{1}{\pi} = 2 \, \text{s}
\]
So, the time period of the simple pendulum is 2 s.