We will use the approximate form of Newton's Law of Cooling:
$\frac{\theta_1 - \theta_2}{t} = K \left( \frac{\theta_1 + \theta_2}{2} - \theta_s \right)$
where $\theta_1$ and $\theta_2$ are the initial and final temperatures, t is the time taken, $\theta_s$ is the surrounding temperature, and K is a constant.
Case 1: Cooling from 61$^\circ$C to 59$^\circ$C in 4 minutes.
$\theta_1 = 61^\circ$C, $\theta_2 = 59^\circ$C, $t = 4$ min, $\theta_s = 30^\circ$C.
The average temperature is $\frac{61+59}{2} = 60^\circ$C.
Substituting these values into the formula:
$\frac{61 - 59}{4} = K(60 - 30)$
$\frac{2}{4} = K(30) \implies \frac{1}{2} = 30K \implies K = \frac{1}{60}$ min$^{-1}$.
Case 2: Cooling from 51$^\circ$C to 49$^\circ$C. Let the time taken be t'.
$\theta_1 = 51^\circ$C, $\theta_2 = 49^\circ$C, $\theta_s = 30^\circ$C.
The average temperature is $\frac{51+49}{2} = 50^\circ$C.
Substituting into the formula with the value of K we found:
$\frac{51 - 49}{t'} = K(50 - 30)$
$\frac{2}{t'} = \frac{1}{60}(20)$
$\frac{2}{t'} = \frac{20}{60} = \frac{1}{3}$
Solving for t':
$t' = 2 \times 3 = 6$ min.